

Probing Sea Quark Polarization Using W^{\pm} Production at PHENIX

Nerangika Bandara
University of Massachusetts Amherst
for PHENIX Collaboration

2015 RHIC & AGS Annual Users' Meeting

Outline

- Motivation
- ightharpoonup Mid-rapidity W
 ightharpoonup e Analysis
- **‡** Forward/backward rapidity $W \rightarrow \mu$ Analysis
- Summary

Motivation

 Flavor-separated quark and anti-quark polarized PDF measurement

- Polarized SIDIS measurements (SMC, HERMES, COMPASS) sensitive to flavor separated quark anti-quark spin contributions
 - limited by large uncertainties of fragmentation functions
- Current estimates => $\bar{u}(x) \neq \bar{d}(x)$
 - $\Delta \bar{u}(x) \neq \Delta \bar{d}(x)$? (Pauli-blocking)

At RHIC, (anti)quark polarizations measured using maximal parity violation in W production

- no fragmentation involved
- higher scale Q^2 set by W mass
- extract $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$

W Production in Polarized p + p

Proton helicity ="+"

- W couples to only left-handed quarks and right-handed anti-quarks
- Longitudinal single spin asymmetry

$$A_L^{W^+} = -\frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

(superposition of different W production criteria)

Flipping the spin orientation of one of the colliding protons and averaging over the other:

$$A_L = \frac{1}{P} \times \frac{N^+(e) - N^-(e)}{N^+(e) + N^-(e)}$$

$$\stackrel{\circ}{\sim} N \text{ is electron yield normalized by luminosity}$$

$$\stackrel{\circ}{\sim} P \text{ is luminosity weighted polarization}$$

where,

- P is luminosity weighted polarization

Sensitivity to Quark Polarizations

$$\langle x_1 \rangle >> \langle x_2 \rangle$$
: $A_L^{W^-} \approx \frac{\Delta d}{d}$ (forward rapidity)

$$\langle x_1 \rangle << \langle x_2 \rangle$$
: $A_L^{W^-} \approx \frac{\Delta \overline{u}}{\overline{u}}$ (backward rapidity)

 $W^{\pm} \rightarrow \mu^{\pm}$ (forward/backward rapidities)

$W^{\pm} \rightarrow e^{\pm}$ (mid-rapidity)

measuring the mixture of quark flavor contribution:

- * For W, combination of Δu and Δd
- \star For W, combination of $\Delta \overline{u}$ and Δd

Impact on Sea-quark polarizations

Significant impact on uncertainties

Mid-rapidity $W^{\pm} \rightarrow e^{\pm}$ Analysis

Central arm (|n|<0.35)

 \circ 2 arms: $\Delta \phi = \pi/2 *2$

 Electromagnetic Calorimeter (PbSc,PbGI)
 ΔφxΔη~0.01x0.01

 Drift (and Pad) Chambers for tracking and charge separation

VTX detector

Strategy

Looking for high energy e^{\pm}

- Online trigger based on EMC 4x4 tower sum
 - fully efficient at p_T >10 GeV
- High energy EMC clusters matched to DC tracks
 - $(\Delta \phi < 0.02 \text{ rad})$

Basic cuts

- Vertex cut: |z| < 30 cm
- Removal of tracks with DC |α|<1 mrad
 - α bending angle
- Time of Flight cut
 - reduces cosmic background

Identifying Signal

- Detector is non-hermetic
- Cannot identify W's on event by event basis
- Need to form the pT spectra for decaying e^{\pm}
- Clear jacobian peak at ~40 GeV
 - corresponds to signal
- Looking for excess of events over background in the signal region (30-50 GeV)

Background Processes

Irreducible background:-

- $Z \rightarrow e^+ + e^-$ (part of signal)
- Heavy quark decay: $c, b \rightarrow e^{\pm} + X$
- $\circ \quad W \to \tau + \nu_\tau \to e \; \nu_e \; \nu_\tau \; \overline{\nu_\tau}$

Reducible background:-

- Charged hadrons
- $\circ \pi^0 \to \gamma \to e^+e^-$ before DC
 - VTX increases photon
 conversions
 (thickness ~14% X₀)
- Cosmic background
- Accidental track match

VTX Conversions

phiV is the angle plane of pair makes with plane normal to beam direction

Isolation cut

rel. isolation cut =
$$\frac{(E_{tot} - E_{candidate}) + p_{DC}}{E_{candidate}}$$
 in a

cone of R=0.4 < 10%

Isolation Cut

The relative isolation cut removes more than a factor of 10 in the background dominated region (10-20 GeV) while leaving the signal region (30-50 GeV) relatively untouched

Run 13 W[±] Spectra

Latest results <u>arXiv:1504.07451</u>

Run 13 W[±] Spectra

Signal region: $30 < p_T < 50 \text{ GeV}$

Background region: $10 < p_T < 20 \text{ GeV}$

Background estimation using two independent methods:

Gaussian Processes for Regression (GPR)

fit simultaneously with simulated

jacobian peak shape

94%

signal

Background Estimation

Using Gaussian Processes for Regression (GPR)

- Use background controlled region to get a shape and extrapolate to the signal region.
- GPR gives the background contribution and its uncertainty.
- The results have been cross checked using a classic functional form (modified power law).
 - good agreement
 - any differences are included in systematic errors.

Asymmetry Calculation

$$A_L = \frac{1}{P} \times \frac{N^+(e) - N^-(e)}{N^+(e) + N^-(e)}$$

- At RHIC, two beams in opposite directions, 120 bunches in each ring, with helicity of pairs alternating.
- Calculate asymmetry taking BLUE beam as polarized, averaging over YELLOW beam.
- Repeat by taking YELLOW beam as polarized, averaging over BLUE beam.
- o Combine results (weighted averages).
- Asymmetry is also calculated using a likelihood method.
- Asymmetry result corrected for background through dilution factor.

- N is electron yield
- P is luminosity weighted polarization

Year	√s (GeV)	∫Ldt (pb-1)	Pol. (%)	P ² L (pb ⁻¹)
2011	500	19.8	51	5.1
2012	510	34.7	56	10.9
2013	510	184.0	55	55.6

arXiv:1504.07451

- Run 2011, 2012 and 2013 results
 have been finalized.
- 27 times more statistics compared to 2009 PHENIX data.
- Submitted for publication arXiv:1504.07451
- Good agreement with the NNPDFpol1.1 set

Single-Spin Asymmetry A_L

Year	√s (GeV)	∫Ldt (pb-¹)	Pol. (%)	P ² L (pb ⁻¹)
2011	500	19.8	51	5.1
2012	510	34.7	56	10.9
2013	510	184.0	55	55.6

Comparison with STAR results.

Both data sets show the same trend with respect to the DSSV central values.

Show preference to a larger $\Delta \bar{u}$ contribution.

Single-Spin Asymmetry A_L

Year	√s (GeV)	∫Ldt (pb-1)	Pol. (%)	P ² L (pb ⁻¹)
2011	500	19.8	51	5.1
2012	510	34.7	56	10.9
2013	510	184.0	55	55.6

- Comparison with STAR results.
- Both data sets show the same trend with respect to the DSSV central values.
- Show preference to a larger Δ \bar{u} contribution.
- Featured in the latest theory calculation
 - overall agreement with the available predictions.

Forward $W^{\pm} \rightarrow \mu^{\pm}$ Analysis

Muon arms

- 1.2<η<2.4 (North), -2.2<η<1.2 (South)
 - $\Delta \phi = 2\pi$
- Muon Tracker (MuTr)
 - tracking, momentum measurement
- Muon Identifier (MuID)
 - particle ID
- Resistive Plate Chamber (RPC)
 - timing improvement, background rejection
- Forward Vertex Detector (FVTX)
 - high resolution tracking
- Fully upgraded in 2012
 - trigger to reject low momentum muons

Background Processes

No jacobean peak to distinguish signal from background

Hadronic BG:

Low energetic hadrons decay within MuTr, misreconstructed as high pT track =>"fake muons"

O Muon BG:

From heavy flavor, quarkonia, Drell-Yan; get smeared to high pT

Analysis Strategy

Multivariate cut for pre-selection:

 Determine likelihood "λ" of an event to be signal or background

$$\lambda = p(DG0, DDG0)p(chi2)p(DCA_r)p(Rpc1/3dca)p(dr_{fvtx} * d\theta_{fvtx})p(d\phi_{fvtx})$$

Calculate "Wness" defined as

$$Wness = \frac{\lambda_{sig}}{\lambda_{sig} + \lambda_{bkg}}$$

 λ_{sig} - from Pythia+PISA MC simulation λ_{bkg} - from data

Events with Wness > 0.92 are selected

Background Estimation

Unbinned maximum likelihood fit

Signal and background fractions calculated minimizing likelihood function

$$L(\theta \mid X) = \frac{n^N e^{-n}}{N!} \prod_{x_i \in X}^{N} \left[\sum_{c} \frac{n_c}{n} p_c(x_i) \right], \qquad n = \sum_{c} n_c$$

 $p_c(x_i)$ – probability distribution functions from simulation (W signal, muon BGs) and data (hadron BGs) using η, dw23

$$x_i = (\eta_i, dw_{23i})$$
 $\theta = (n_{sig}, n_{\mu}, n_{had})$

- Hadronic BG dominates at low Wness
 - extrapolate dw23 to Wness > 0.92

$$dw23 = p_T \times \sin(\theta) \times d\phi_{23}$$

(reduced azimuthal bending)

Signal / Background Ratio

1D projections of 2D unbinned maximum likelihood fit

- \circ 16 < p_T < 60 GeV/c, f > 0.92
- Use η and dw23 fits to count and calculate S/B
- S/B ratio used as a dilution factor to calculate the corrected asymmetry.

80

60

40

Forward Asymmetry Results

- Run 2013 preliminary results.
- Results are in agreement with theoretical predictions within uncertainties.
- Currently working to improve the systematic uncertainties.
- Moving towards the final result and publication.

Summary

❖ Run 2013 :-

- PHENIX recorded more than two times the statistics from Run 2011 and 2012 combined
- Single spin asymmetries A_L have been measured are consistent with DSSV global analysis.
 - $W \rightarrow e$ results favoring larger $\Delta \bar{u}$ contribution.
- $W \rightarrow e$ results have been submitted for publication along with 2011 and 2012 data.
- $W \rightarrow \mu$ preliminary results have been presented.
- Improved precision will reduce uncertainties on $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$
- ❖ With Run 2013 and previous results, RHIC *W* program is expected to improve our knowledge on polarized sea quark distributions.

Backup

- Through the use of a covariance function determined from the data the GPR can make predictions for data sufficiently close to the input set.
- It samples over a whole class of functional forms and returns predictions that are consistent with the data.
 - The class is determined by the covariance function
- Sampling over these functions and filling a 2D histogram will give a Gaussian distribution for each prediction point
- The mean of the Gaussian distribution is the prediction and the sigma is the uncertainty